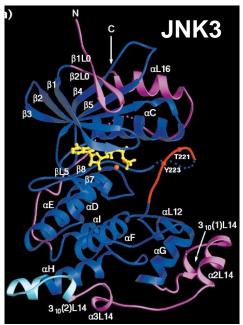
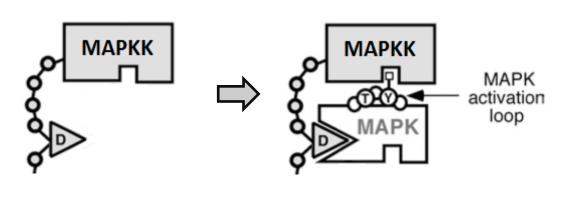

Role of intrinsically disordered regions in kinase signalling pathways: Substrate recognition in c-Jun N-terminal kinase (JNK) pathway


Jaka Kragelj Protein Dynamics and Flexibility by NMR Institut de Biologie Structurale Grenoble

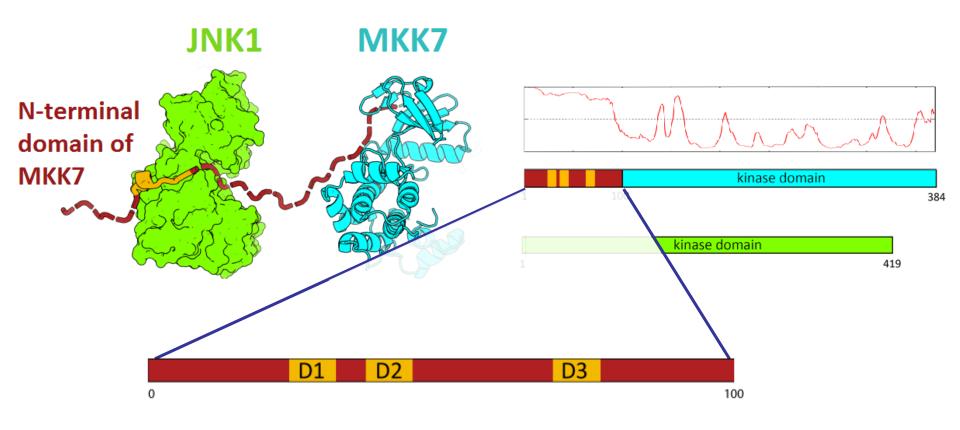
Mitogen-Activated Protein Kinase networks



Xie X., Structure 1998

MAPKK-MAPK, MAPK-substrate, MAPK phosphatase

	++++	$\phi X \phi$		
Scaffolds				
JIP1	DTY RPKR	DTY <u>RPKR</u> PTT- <u>L</u> N <u>L</u> FPQVPR		
ЛІР3	GRS <u>RK</u> E <u>R</u> I	GRS $\underline{RKERPTS}$ - \underline{LNV} \underline{FPLADG}		
Substrates				
c-Jun	SNP <u>K</u> IL <u>K</u> Q	SNP $\underline{K}IL\underline{K}QSMT\underline{L}N\underline{L}$ ADPVGS		
ATF2	AVH <u>K</u> H <u>K</u> H	AVH $\underline{K}\underline{H}\underline{K}\underline{H}\underline{E}\underline{M}\underline{T}\underline{L}$ KFGPAR		
ELK1	QPQ <u>KGRK</u>	$QPQ \underline{K} G \underline{RK} PRD\text{-}\underline{L} E \underline{L} PLSPSL$		
yDig1	KSL <u>KR</u> GR	$KSL ~\underline{KR} G\underline{R} VPAP\underline{L} N\underline{L} ~SDSNTN$		
		111110		

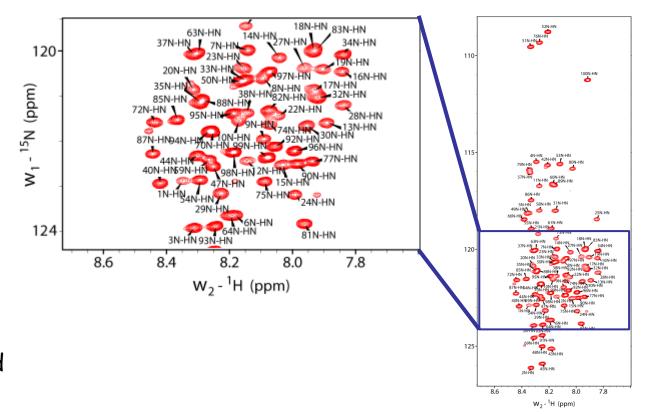

_	Peptide	Sequence		
_			+++	
	MEK1	MP	KKKPTPIQL	NPAPDG
	MEK2 ◆	MLA	RRK PVLPA L T I	NPTIAE
	MKK3 🔺	GKS	KRKKDLRI	SCMSKP
	MKK6 ■	SQSKG	KKRNPGLKI	PKEAFE
	MKK4	MQG	KRKALKL	NFANPP
M	KK7-D2	Q	RPRPTLQL	PLANDG

Bardwell L., Biochem Soc Trans (2006) Bardwell A. J. et al., JBiol Chem (2009)

MKK7 - JNK interaction

¹MAASSLEQKL ¹¹SRLEAKLKQE ²¹NREARRRIDL ³¹NLDISPQRPR ⁴¹PTLQLPLAND

⁵¹GGSRSPSSES ⁶¹SPQHPTPPAR ⁷¹PRHMLGLPST ⁸¹LFTPRSMESI ⁹¹EIDQKLQEIM

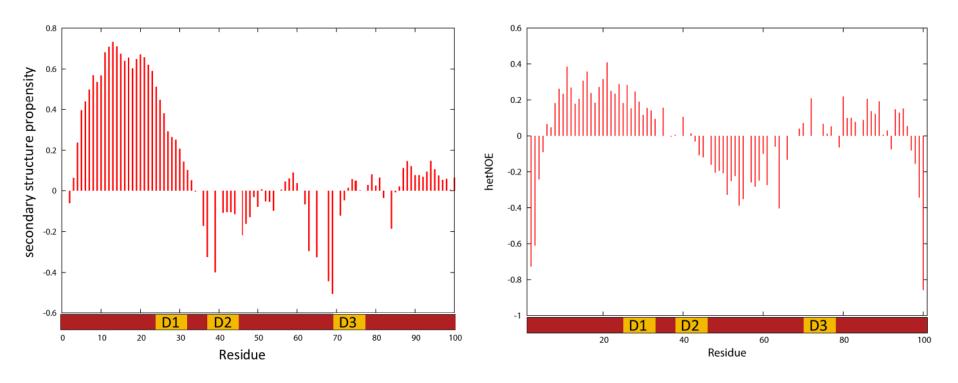


Assignment

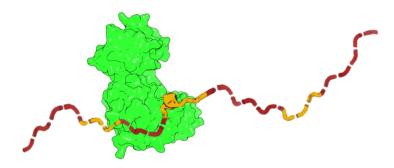
- 100 residues
- 12 % prolines
- 87 out of 88 nonproline residues are assigned
- ¹H spectral dispersion shows that the domain is disordered
- two interchangeable P-X-X-P motifs need to be confirmed

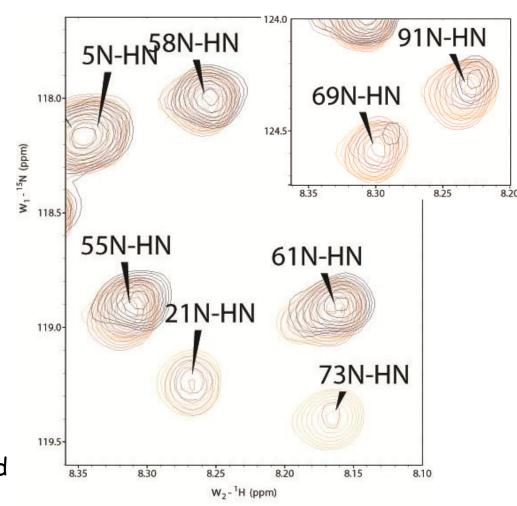
⁵¹GGSRSPSSES

¹MAASSLEQKL ¹¹SRLEAKLKQE ²¹NREARRRIDL ³¹NLDISPQRPR ⁶¹SPQHPTPPAR ⁷¹PRHMLGLPST ⁸¹LFTPRSMESI ⁹¹EIDQKLQEIM


⁴¹PTLQLPLAND

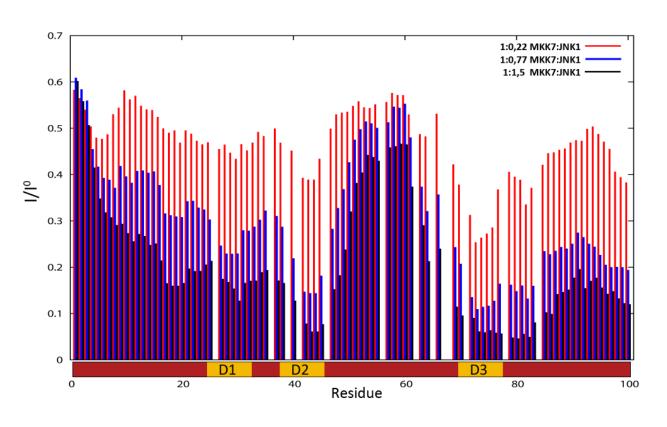
Characterization of N-terminal domain of MKK7


- a region with a-helical propensity at the N-terminus
- the rest of the N-terminal domain of MKK7 is extended and flexible
- C-terminus not as extended and flexible as in the central region

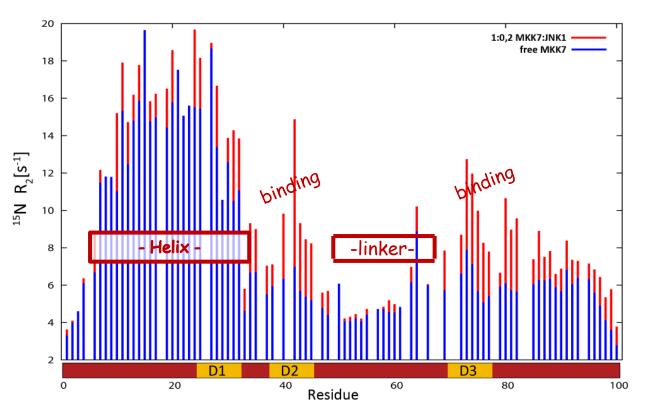


Titration with JNK1

Expected:


- high M_W complex (43 kDa + 11 kDa)
- Three possibly interchanging binding sites
- residues outside the
 D-site motif interact too
- N- and C-termini far away from the D-sites are less likely to bind

Peak intensities drop in restricted regions


- ¹H-¹⁵N HSQC of [1H,15N] MKK7 - JNK1 complex at three different ratios
 - 1:0,22
 - 1:0,77
 - 1:~1,5
- normalized peak intensities
- averaged with a window function over 5 residues
- D1 < D2 < D3

Measurement of T₂ relaxation rates confirms mapped binding regions

- Comparison between the unbound form (blue) and complex at a ratio 1:0,22 [1H,15N] MKK7 - JNK1 (red)
- T₂ relaxation rates do not increase in the linker region between the D2 and D3 sites

³²DISPQRPR ⁴¹PTLQLPLAND ⁵¹GGSRSPSSES ⁶¹SPQHPTPPAR ⁷¹PRHMLGLPST ⁸¹LFT

Perspectives

- behavior of the N-terminal domain in full length MKK7
- More information on D-site affinities
- Better description of local conformational sampling along the N-terminal domain of MKK7
- Comparison with other interacting MKK MAPK pairs
- > Understanding of features governing specificity

